
Understanding User-Bot Interactions
for Small-Scale Automation in
Open-Source Development

Dongyu Liu1

MIT
Cambridge, MA, USA
dongyu@mit.edu

Micah J. Smith1

MIT
Cambridge, MA, USA
micahs@mit.edu

Kalyan Veeramachaneni
MIT
Cambridge, MA, USA
kalyanv@mit.edu

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI ’20 Extended Abstracts, April 25–30, 2020, Honolulu, HI, USA.
© 2020 Copyright is held by the author/owner(s).
ACM ISBN 978-1-4503-6819-3/20/04.
http://dx.doi.org/10.1145/3334480.3382998

Abstract
Small-scale automation tools, or “bots,” have been widely
deployed in open-source software development to support
manual project maintenance tasks. Though interactions
between these bots and human developers can have sig-
nificant effects on user experience, previous research has
instead mostly focused on project outcomes. We reviewed
existing small-scale bots in wide use on GitHub. After an in-
depth qualitative and quantitative evaluation, we compiled
several important design principles for human-bot interac-
tion in this context. Following the requirements, we further
propose a workflow to support bot developers.

Author Keywords
human-centered computing; HCI design and evaluation
methods; software and its engineering; software creation
and management

CCS Concepts
•Human-centered computing→ HCI design and evalua-
tion methods; •Software and its engineering→ Software
creation and management;

1Equal contribution

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW335, Page 1



Introduction
As development of open-source software (OSS) reposi-
tories continues to grow, developers have increasingly
turned to new approaches in order to reduce the demands
of project maintenance and ease workflows for contributors.
Automation tools, while once reserved for large tasks such
as running test suites, are now also being used for small
maintenance-related tasks such as welcoming new contrib-
utors or triaging bug reports. These small-scale bots are
simple applications that perform small maintenance-related
tasks on repositories, by using a code hosting platform’s
API to take action in response to events on the platform and
interacting with developers through the platform itself.

Figure 1: Contentious human-bot
and contributor-maintainer
interactions occur in a pull request
review thread on GitHub. The
stale bot applied a label after a
period of inactivity causing the
original contributor to “bump” the
thread, in turn provoking a
response from a project maintainer.

While small-scale bots are deployed by project maintain-
ers in order to enhance their workflow, these bots may
have consequences on the user experience of existing
and prospective project contributors. The preferences and
needs of maintainers and contributors may even come into
conflict. For example, stale bot automatically responds
to contributor and maintainer actions on GitHub Issues to
mark threads as “stale” or “not stale” based on periods of
inactivity [7]. While the volume of open issues can be a bur-
den for maintainers [8], and while new contributors who
obtain a quick resolution to bug reports are more likely to
become long-term contributors [20], user experience can
be negatively affected by aggressive bot actions (i.e., [2],
Figure 1).

Previous research in software development bots has largely
ignored the study of interactions between bots, maintain-
ers, and contributors and consequences for user experi-
ence, instead focusing on project outcomes such as issue
response time and recommendation accuracy [18, 16]. Sim-
ilarly, there is potential to more deliberately apply design
lessons from chatbots and AI systems [1, 9].

In this paper, we study user experience in relation to inter-
actions between bots and OSS developers. We extensively
survey bots and compile key characteristics. We introduce
a mental model for understanding opportunities for human-
bot interaction design. From a thorough literature review
and user study, we propose seven design principles for bot
developers. Finally, we apply our approach to a case study.

Background
GitHub, like other code hosting providers, exposes a com-
prehensive API for actions on its platform that can be used
by purpose-driven apps, or “bots”, to automate and improve
developer workflows. A bot can subscribe to events on a
repository with fine granularity, such as pushed branches,
new issues opened, and completed automated checks.
When these events occur, a webhook with detailed informa-
tion on the event is sent to the underlying application. The
bot can respond as itself by taking action using the GitHub
API, such as writing comments, committing code, reviewing
pull requests, and creating software releases. Using bot de-
velopment frameworks [15, 6, 4], bot developers can create
small-scale tools by writing little more than a short script.
Although the same tooling is also used to create “large-
scale” apps, such as continuous integration providers that
run a collection of test suites and report the results, these
are not the focus of this work.

Wessel et al. [17] study the ways bots are currently used
in OSS projects on GitHub and whether introducing bots
changes certain project characteristics such as number of
comments and PR close time. Erlenhov et al. [5] provide
a faceted taxonomy of bot types with facets such as pur-
pose, initiation, communication, and intelligence. Lebeuf et
al. [10] provide a separate taxonomy based on the environ-

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW335, Page 2



Interactions Configuration

Medium Content Store Options

Task Bot M C L K G Text Cmd GUI File Oth. Tem. U

Acknowledge contributors all-contributors-bot ! ! ! ! ! !

Manage ML submissions ballet-bot ! ! ! ! !

Document patch origins dco ! ! ! ! !

Onboard new contributors first-timers ! ! ! ! ! !

Organize issues at scale issue-label-bot ! ! ! ! !

Find best PR reviewers mention-bot ! ! ! ! ! !

Ensure well-formed PRs poppins-pr-checklist ! ! ! ! !

Maintain civil discourse sentiment-bot ! ! ! ! ! !

Act on issues quickly stale ! ! ! ! ! !

Track todo items todo ! ! ! ! ! ! ! !

Correct spelling typot ! ! ! !

Table 1: OSS development tasks addressed by selected small-scale bots. Legend: M=mentions/notifications, C=comments, L=labels,
K=checks, G=git actions, Cmd=commands or keywords, File=file-based configuration store, Oth.=other configuration store, Tem.=templates
can be configured, U=green lists/red lists of users can be configured.

ment in which the bot operates, the intrinsic properties of
the bot, and the bot’s interaction with its environment.

Certain bots have been studied in detail from both quantita-
tive and qualitative points of view. For example, mention-bot,
which recommends reviewers for pull requests, was found
to have a large impact on review response time in less ac-
tive projects, but solicited mixed perceptions from users
overall due to concerns such as insensitivity to context and
unbalanced workload allocation [14]. Lessons learned from
bots in other contexts such as chatbots include that users
prefer to have a clear understanding of bot capabilities and
have low tolerance for mistakes and bugs [16, 12, 11, 19,
9]. Cheng and Guo [3] analyze threads discussing usabil-

ity and UX issues for three large open-source projects with
implications for bots that interact with users in Issues.

Bot Characteristics
We surveyed existing small-scale bots. In this setting, we
restrict our analysis to GitHub apps that (1) act exclusively
through the GitHub API in response to webhooks (2) ad-
dress project maintenance tasks (3) do not have exter-
nal application components such as web services and (4)
maintain limited or no state across actions. Starting with
bots we were already familiar with, we also reviewed bots
mentioned in the literature and searched for projects on
GitHub tagged with probot, github-app, and related top-
ics. We also randomly sampled public projects on GitHub

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW335, Page 3



that have installed these bots and manually analyzed human-
bot interactions in discussion threads. A list of selected bots
is shown in Table 1.

We observe that most bots interact with humans conversa-
tionally by creating text elements such as issue/PR bodies
and comments; they render text from a simple template,
which may be configured by project maintainers; and are
configured in a file stored in the repository and owned by
maintainers. Other interaction and configuration styles are
rare.

Figure 2: Human-bot interaction
workflow mediated by code hosting
platform. While we allow that
agents can interact directly
(dashed lines) — such as via email
or chat, unmediated by the platform
— it is not the focus for bot
interaction designers.

We extract the following key characteristics of small-scale
bots that have the potential to affect user experience.

• Interaction medium. Bot developers can take advan-
tage of the rich set of interactions possible on platforms
like GitHub. These include mentions and notifications,
comments, reactions, review annotations, labels, checks,
check reports, requested action buttons, and team dis-
cussions. For example, issue-label-bot allows devel-
opers to give emoji reaction feedback on issue labeling
decisions.

• Interaction content. For each interaction, bot develop-
ers can consider representing the transmitted content
in various ways. These include rendered text templates,
structured text (keywords, commands, markup), media
(images, speech, emoji), GUI elements, check statuses,
and visualizations. For example, typot renders a multiple
choice list of corrections to misspelled words in Mark-
down.

• Configuration options. Bot developers can customize
human-bot interactions by providing flexible bot config-
uration. Aspects of interactions that can be configurable
include notification and mention preferences, text tem-
plates, operational parameters, and error handling. For
example, mention-bot allows maintainers to configure

lists of allowed/disallowed users for the bot to “@mention”
for review of PRs, though even more careful customiza-
tion is needed to avoid overwhelming developers [14].

• Configuration store. Bot developers can store configu-
ration settings as files in the repository, keywords/commands
in user-generated content such as commit messages,
files located in other repositories includes ones owned by
contributors, and bot defaults. For example, all-contributors-
bot respects configuration in the .all-contributorsrc
file in the project repository allowing both bots and main-
tainers to update the gallery of project contributors.

Human-Bot Interaction Workflow
How should bot developers identify opportunities for en-
hancing interactions? We present a simple framework that
can be a useful mental model for bot developers (Figure 2).
Our framework consists of a workflow graph with agents
comprised of contributors C, maintainers M , and bots
B with interactions mediated by a code hosting platform
P . Agents (nodes in the graph) can receive messages on
channels (directed edges) causing some change in their
internal state, update their state, and take actions in re-
sponse.2 Bot developers impose an existing software de-
velopment maintenance task on this framework by tracing
the path that is traversed by human-human interactions.
They should then observe that bots can take action in re-
sponse to every change of state on the platform and con-
sider adding edges P → B and B → P at each such
change.

Design Principles
We conducted a thorough literature review and an extensive
user study to answer two research questions: (RQ1) What

2While we allow that agents can interact directly, it is not common in
the small-scale tasks we study and we assume these interactions are not
present in the design of small-scale bots.

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW335, Page 4



are the key design principles for GitHub bots interacting
with developers? (RQ2) How do maintainers, contributors,
and bot developers perceive these design principles?

3 3
12

9

1
11

12

5
16

3
2

1

4
2

3 4
8 5

8
35

6

10

7

5

11

1

1
7

3.
21

 (σ
=1

.1
2)

3.
42

 (σ
=1

.1
1)

3.
42

 (σ
=1

.3
2)

3.
88

 (σ
=1

.0
5)

4.
25

 (σ
=0

.6
6)

4.
46

 (σ
=0

.5
8)

4.
54

 (σ
=0

.7
1)

 

0
50

%
50

%

N
ot

 im
po

rt
an

t
Sl

ig
ht

ly
 n

ot
im

po
rt

an
t

N
eu

tr
al

Im
po

rt
an

t
Ve

ry
 im

po
rt

an
t

10
0%

10
0%

Be
 ro

bu
st

 a
nd

 s
ta

bl
e 

(P
1)

En
su

re
 tr

an
sp

ar
en

cy
 (P

2)
Ke

ep
 re

sp
on

se
 s

im
pl

e 

Kn
ow

 w
he

n 
to

 in
te

rr
up

t (
P4

) 

Pr
ov

id
e 

ric
h 

U
I e

le
m

en
ts

 (P
5)

 

A
llo

w
 p

er
so

na
liz

at
io

n 
(P

6)
 

D
o 

no
t o

ve
ru

se
 (P

7)
 

an
d 

sp
ec

i�
c

(P
3)

Figure 3: The ranking results of
the importance of seven design
principles.

To answer the first question, we revisited bot-related re-
search papers from various conferences/journals ranging
from human-computer interaction to software engineer-
ing, such as CHI, CSCW, FSE, ASE, BotSE, and SEIP. We
compiled a list of potential design principles that are helpful
in improving human-bot interactions. We conducted semi-
structured interviews with some stakeholders to further
screen the principles and retain the key ones (Figure 3).
Though they may recall general UI design principles [13],
our principles are interpreted in a much different setting.
The insights can specifically benefit GitHub bot designers
and encourage effective use of bots.

For the second research question, we invited developers
by email, in group lists, and by personal invitations to take
an online survey (n=24, response rate ∼ 27%). Respon-
dents had between 2 and 12 years of software development
experience (µ=6.0, σ=2.83) and served different roles par-
ticipating in projects. Ten respondents were familiar with
developing with GitHub bots and two of them were bot de-
velopers. We asked the respondents to rate the importance
of each design principle on a 5-point Likert scale with 1 be-
ing the least important. Figure 3 shows the ranking results
of all the design principles.

Principle 1 Be robust and stable (µ=4.54, σ=0.71). Bots
should take the same or similar actions when given the
same or similar inputs. The principle is regarded as “very
important” by most respondents (16/24). One commented,
“Stable and predictable behavior is an important part to
eliminate the human-machine boundary.”

Principle 2 Ensure transparency when bots take action
(µ=4.46, σ=0.58). On many occasions, bots have to take
actions to facilitate development, such as accepting a pull
request (ballet-bot), or assigning code reviewers (mention-bot).
Transparent communication provides visibility and enables
maintainers to correct mis-actions. For example, mention-bot
and other similar bots have been observed to allocate code
review assignments in an unbalanced manner. One respon-
dent highlighted that transparency could be achieved using
preset rules.

Principle 3 Keep bot responses simple and specific (µ=4.25,
σ=0.66). On one hand, users should understand what to
expect from the bots. One respondent commented, “I feel
it is meaningful and helpful to know how intelligent the bot
is and what I can expect from it”. On the other hand, bot re-
sponses should be bound to certain specified subjects and
avoid creating complicated, off-topic paths.

Principle 4 Know when bots can, and cannot, interrupt a
human (µ=3.88, σ=1.05). Developers, like other knowledge
workers, require periods of concentration; minimizing or
deferring interruptions can support developer productivity
[21]. One respondent commented, “Bots at the wrong time
may interrupt my thoughts.”

Principle 5 Incorporate rich UI elements as needed (µ=3.42,
σ=1.32). UI elements such as buttons, menus, images, and
information charts can better engage users in communica-
tion. Well-incorporated UI elements can help developers
significantly improve the efficiency to perform certain tasks
(e.g., confirm pull request). However, this principle con-
flicts with principle #3 in some sense. The high standard
deviation shows that respondents have divergent opinions.
Therefore, we must be prudent to incorporate rich UI ele-
ments when needed.

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW335, Page 5



Principle 6 Allow personalizing bot behavior (µ=3.42,
σ=1.11). The benefits and risks of personalization and
configuration must be carefully weighed. The distribution
of scores indicates divergent respondent opinions. One
respondent observed that considering that bot output is
mostly text-based, how bots present the content can highly
impact users’ perceptions. Some respondents highlighted
their desires to customize bots interactions such as when
they are “@mentioned”, even if they do not have maintainer
privileges to the repository. Alternatively, several respon-
dents pointed out that bot-behavior should be standardized
for stability (Principle #1).

Principle 7 Do not overuse bots (µ=3.21, σ=1.12). Over-
reliance on bots in communication can hinder creativity and
productivity, because the adoption of bots reduces the op-
portunities for interpersonal communication. Surprisingly,
this principle achieved the lowest importance score, as
sometimes in OSS development, interpersonal communica-
tion can be a challenge rather than a benefit. One respon-
dent observed, “If a person tells another person to fix their
code style, its pedantic, when a bot does it, it’s expected.”

Figure 4: A workflow for Stale bot.
A typical issue resolution workflow
may be as follows: 1 C → P
(read “platform”) posts initial bug
report (or follow-up comment), 2

P → M notifies of new comment,
3 M → M investigate issue

among themselves, 4 M → P
follows up with comment or git
action, and 5 P → C notifies of
new response. The workflow can
then repeat.

Example Bot Task: Act to quickly resolve issues. In this
example, we walk through our proposed interaction work-
flow framework and demonstrate how our design principles
can be applied to guiding bot design. Issue or PR threads
with no activity can block progress of maintainers or dis-
courage contributors [8, 20]. The bot developer then looks
to improve this process (Figure 4). The stale bot is in-
serted in this workflow by following up on activity on P after
some period of inactivity. For example, n days after P → B
notifies the bot of a contributor comment 2a , the actual bot
responds B → P by applying a stale label and rendering a
comment template according to the .github/stale.yml

configuration file 2b . This simple workflow demonstrates
principle #1.

We might improve this bot by considering other interaction
and configuration approaches. For example, we observe
that the inability to control the amount of communication
from the bot is a source of friction for OSS developers (Fig-
ure 1). Following principles #4, #5 and #6, the developers
of stale bot could consider allowing the bot to be controlled
per-thread using emoji feedback.

Threats to validity. As we note, some design principles
can conflict with each other and respondents feel differently
about their relative importance. This could be addressed
by increasing the sample of our survey and analyzing re-
sponses from contributors, maintainers, and bot creators
separately. We could also conduct a controlled user study
to further understand and measure how the principles im-
pact user experience.

Conclusion
In this paper, we have systematically studied the interaction
behaviors between humans and bots in OSS development.
We presented a unified human-bot interaction workflow that
can be applied to any small-scale automation tool. Through
an extensive literature review and user study, we summa-
rized seven useful design principles that will significantly
influence how users perceive a bot when interacting with it.
We argue that these design principles could be used as a
good guideline to evaluate the user experience of a bot with
regard to its interaction behavior.

Acknowledgements
This work is supported under NSF award 1761812. We
thank our survey respondents and anonymous reviewers for
their comments.

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW335, Page 6



REFERENCES
[1] Saleema Amershi, Kori Inkpen, Jaime Teevan, Ruth

Kikin-Gil, Eric Horvitz, Dan Weld, Mihaela Vorvoreanu,
Adam Fourney, Besmira Nushi, Penny Collisson, and
et al. 2019. Guidelines for Human-AI Interaction. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems - CHI ’19. ACM Press,
1–13. DOI:
http://dx.doi.org/10.1145/3290605.3300233

[2] Cargo Issue 6035. 2018. Tracking Issue for Stale Bot.
(2018).
https://github.com/rust-lang/cargo/issues/6035
Accessed 2019-11-30.

[3] Jinghui Cheng and Jin L.C. Guo. 2018. How Do the
Open Source Communities Address Usability and UX
Issues?: An Exploratory Study. In Extended Abstracts
of the 2018 CHI Conference on Human Factors in
Computing Systems - CHI ’18. ACM Press, 1–6. DOI:
http://dx.doi.org/10.1145/3170427.3188467

[4] Kyle Daigle. 2018. GitHub Actions: built by you, run by
us. (2018).
https://github.blog/2018-10-17-action-demos
Accessed 2019-11-27.

[5] Linda Erlenhov, Francisco Gomes de Oliveira Neto,
Riccardo Scandariato, and Philipp Leitner. 2019.
Current and Future Bots in Software Development. In
2019 IEEE/ACM 1st International Workshop on Bots in
Software Engineering (BotSE). IEEE, 7–11. DOI:
http://dx.doi.org/10.1109/BotSE.2019.00009

[6] Brian T Ford. 2014. Mary Poppins. (2014).
https://github.com/btford/mary-poppins Accessed
2019-11-30.

[7] Brandon Keepers. 2019. Stale | Close stale Issues and
Pull Requests. (2019).

https://github.com/probot/stale Accessed
2019-11-30.

[8] Andrew J. Ko and Parmit K. Chilana. 2010. How power
users help and hinder open bug reporting. In
Proceedings of the 28th international conference on
Human factors in computing systems - CHI ’10. ACM
Press, 1665. DOI:
http://dx.doi.org/10.1145/1753326.1753576

[9] Carlene Lebeuf, Margaret-Anne Storey, and Alexey
Zagalsky. 2017. How Software Developers Mitigate
Collaboration Friction with Chatbots. arXiv:1702.07011
[cs] (Feb 2017). http://arxiv.org/abs/1702.07011
arXiv: 1702.07011.

[10] Carlene Lebeuf, Alexey Zagalsky, Matthieu Foucault,
and Margaret-Anne Storey. 2019. Defining and
Classifying Software Bots: A Faceted Taxonomy. In
2019 IEEE/ACM 1st International Workshop on Bots in
Software Engineering (BotSE). IEEE, 1–6. DOI:
http://dx.doi.org/10.1109/BotSE.2019.00008

[11] Christoph Matthies, Franziska Dobrigkeit, and Guenter
Hesse. 2019. An Additional Set of (Automated) Eyes:
Chatbots for Agile Retrospectives. In 2019 IEEE/ACM
1st International Workshop on Bots in Software
Engineering (BotSE). IEEE, 34–37. DOI:
http://dx.doi.org/10.1109/BotSE.2019.00017

[12] Alessandro Murgia, Daan Janssens, Serge Demeyer,
and Bogdan Vasilescu. 2016. Among the Machines:
Human-Bot Interaction on Social Q&A Websites. In
Proceedings of the 2016 CHI Conference Extended
Abstracts on Human Factors in Computing Systems -
CHI EA ’16. ACM Press, 1272–1279. DOI:
http://dx.doi.org/10.1145/2851581.2892311

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW335, Page 7

http://dx.doi.org/10.1145/3290605.3300233
https://github.com/rust-lang/cargo/issues/6035
http://dx.doi.org/10.1145/3170427.3188467
https://github.blog/2018-10-17-action-demos
http://dx.doi.org/10.1109/BotSE.2019.00009
https://github.com/btford/mary-poppins
https://github.com/probot/stale
http://dx.doi.org/10.1145/1753326.1753576
http://arxiv.org/abs/1702.07011
http://dx.doi.org/10.1109/BotSE.2019.00008
http://dx.doi.org/10.1109/BotSE.2019.00017
http://dx.doi.org/10.1145/2851581.2892311


[13] Jakob Nielsen and Rolf Molich. 1990. Heuristic
evaluation of user interfaces. In Proceedings of the
SIGCHI conference on Human factors in computing
systems Empowering people - CHI ’90. ACM Press,
249–256. DOI:
http://dx.doi.org/10.1145/97243.97281

[14] Zhenhui Peng, Jeehoon Yoo, Meng Xia, Sunghun Kim,
and Xiaojuan Ma. 2018. Exploring How Software
Developers Work with Mention Bot in GitHub. In
Proceedings of the Sixth International Symposium of
Chinese CHI on - ChineseCHI ’18. ACM Press,
152–155. DOI:
http://dx.doi.org/10.1145/3202667.3202694

[15] Probot 2019. Probot | GitHub Apps to automate and
improve your workflow. (2019).
https://probot.github.io Accessed 2019-11-27.

[16] Simon Urli, Zhongxing Yu, Lionel Seinturier, and
Martin Monperrus. 2018. How to Design a Program
Repair Bot? Insights from the Repairnator Project. In
ICSE-SEIP ’18: 40th International Conference on
Software Engineering: Software Engineering in
Practice Track. ACM, New York, NY, USA, 10.

[17] Mairieli Wessel, Bruno Mendes de Souza, Igor
Steinmacher, Igor S. Wiese, Ivanilton Polato,
Ana Paula Chaves, and Marco A. Gerosa. 2018. The
Power of Bots: Characterizing and Understanding Bots
in OSS Projects. Proceedings of the ACM on
Human-Computer Interaction 2, CSCW (Nov 2018),
1–19. DOI:http://dx.doi.org/10.1145/3274451

[18] Mairieli Wessel, Igor Steinmacher, Igor Wiese, and
Marco A. Gerosa. 2019. Should I Stale or Should I
Close? An Analysis of a Bot That Closes Abandoned
Issues and Pull Requests. In 2019 IEEE/ACM 1st
International Workshop on Bots in Software
Engineering (BotSE). IEEE, 38–42. DOI:
http://dx.doi.org/10.1109/BotSE.2019.00018

[19] Bowen Xu, Zhenchang Xing, Xin Xia, and David Lo.
2017. AnswerBot: Automated generation of answer
summary to developers’ technical questions. In 2017
32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE,
706–716. DOI:
http://dx.doi.org/10.1109/ASE.2017.8115681

[20] Minghui Zhou and Audris Mockus. 2012. What make
long term contributors: Willingness and opportunity in
OSS community. In 2012 34th International
Conference on Software Engineering (ICSE). IEEE,
518–528. DOI:
http://dx.doi.org/10.1109/ICSE.2012.6227164

[21] Manuela Züger, Will Snipes, Christopher Corley,
André N. Meyer, Boyang Li, Thomas Fritz, David
Shepherd, Vinay Augustine, Patrick Francis, and
Nicholas Kraft. 2017. Reducing Interruptions at Work:
A Large-Scale Field Study of FlowLight. In
Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems - CHI ’17. ACM Press,
61–72. DOI:
http://dx.doi.org/10.1145/3025453.3025662

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW335, Page 8

http://dx.doi.org/10.1145/97243.97281
http://dx.doi.org/10.1145/3202667.3202694
https://probot.github.io
http://dx.doi.org/10.1145/3274451
http://dx.doi.org/10.1109/BotSE.2019.00018
http://dx.doi.org/10.1109/ASE.2017.8115681
http://dx.doi.org/10.1109/ICSE.2012.6227164
http://dx.doi.org/10.1145/3025453.3025662

	Introduction
	Background
	Bot Characteristics
	Human-Bot Interaction Workflow
	Design Principles
	Conclusion
	Acknowledgements
	REFERENCES 



